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Abstract gz\’%fsjggj/

The stability with respect to small perturbations of a piecewise linear
velocity profile of the half-jet (or shear layer) type in a layer with an un-
stable entropy gradient has been studied. The maximum instabilities are found
to be either in the plane of the velocity profile or perpendicular to it devending
on a critical Richardson number which is quite insensitive to the depth of the

layer,
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I, INTRODUCTION

Previous studies of the stability of a shear flow in a thermally unstable at-
mosphere have been restricted to velocity profiles with constant shear°1-3 This
combination of unstable stratification with a stable velocity profile has been used

as a model for tﬁe atmosphere, and in particular, has been used to explain frequently
observed cloud formations in unstable layers which take the form of long rolls with
their axes parallel to the wind directionlo In such a model these are the only motions
which are not affected by the inhibiting effect of the shear, One of the difficulties
of such a model is that it does not establish the width of the rolls since the max-
imum instability occurs for -infinite wave number. Moreover, it has been observed that
a vertical variation of shear in the unstable layer seems to be characteristic of
these formationsh, and it seems clear that, at least foézéufficiently small (negative)
Richardson number, the instabilities of such a velocity profile should dominate,

In general, when both types of instability are present, one might expect the
maximum instability to represent an interaction between them (especially in view of
the inequality (3.1) derived in section 3) occurring for a finite wave number which
would establish the scﬁle of the motion., To include the effect of a variable shear,

8 piecewise linear profile has been used in a layer with a negative entropy gradient,

The results for this simple model are negative, i.e., instabilities are either of the



shear type or the convective type depending on a eritiecal Richarson number but no
interaction is found. This does not, of course, exclude the possibility of such an

interaction for a more realistic model,

2. THE PERTURBATION EQUATIONS
The fundamental equations to be used are the momentum and continuity equations,

the conservation of entropy, and the perfect gas law:
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Asterisks are used to denote dimensional quantities, The gravitational constant is g
-

and g is (0,0,g). The quantities V,, >, , P, , and S, are the velocity, demsity,

pressure, and entropy, and s is the ratio of specific heats, CP/CVO These equations

are linearized about a mean velocity (U(z),0,0), and a mean density, pressure, and

entropy (3* (z), Py (z) and S, (z) by the equations
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vhere the primed quantities are assumed small., If we assume that the primed

quantities have the form

¢ + —d*** |
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and if we further neglect acoustic waves by setting the velocity of sound,

/ Y &Q-/%h s equal to infinity and solve the linearized equations for W we obtain

the equation
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where k, is the total wave number
7}
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Here, primes denote derivatives with respect to z.

We next make the Boussinesq approximation of neglecting the variation of density,

except where it is multiplied by the gravitational constant g. The resulting equation

can be put into dimensionless form by introducing reference quantities V, fg for the
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velocity and density and by assuming that the velocity field is characterized by a

length / and that the stratification is characterized by a length d,

W - { K+

We obtain

2
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v where the asterisks are dropped to denote dimensionless quantities,

J is the local
Richardson number given by

J':_Z:_’f__s_/

*
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3.

A BOUND ON THE AMPLIFICATION OF THE PERTURBATIONS

A method of Howa.rd5 can be used to obtain a bound on the complex wave velocity)

Cys of three dimensional amplified perturbations, Acoustic waves are neglected but
the Boussinesq approximation is not needed, Equation (2,1) can be written

_ .o’ 2 s, 2 2
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where
W
F o= Uy - Cw

If we multiply by the complex conjugate of F, integrate over (zl.zz)~(where z

3 and z,
may become infinite), and impose F = O at z

1 and Z,y We obtain
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If this equation is separated into real and imaginary parts, from the imaginary part

ve have, assuming ci;> o,

J’cd Z L&‘Q = C;u*§‘¥2 Q



The real part can now be written
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We assume that the entropy gradient is negative, Let (~-g -CL )maxbe the maximum
' e

Sa
of -gé in (zl,zz)o Then
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Thus, c, is restricted to a semicircle in the complex ¢, - plane whose center is the

midpoint of the range of U,, If we assume (without loss of generality) that
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~Uop, < U, (z) < Ugy, then in dimensionless form this becomes

2

2 2
' 0( C l S O< Uo - J_W (301)

The first term on the right hand side of (3,1) is the maximum amplification for
a shear flow alone while the second term is the maximum amplification for an un-
stable layer. Thus, the inequality suggests the possibility of an amplification for
the combined effect of the two types. of instability which is greater than that due to

either cause by itself,

4, THE EIGENVALUE EQUATION

We assume a dimensionless velocity profile:

Uu = 2 12| < |
v o= %1 1z213% |
and an unstable layer jz) < L:
J < 0 12y € L
J =0 lz} > L

vhere L = d/¢ = 1 (Figure 1)

Figure 1
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Solutions of Eq. (2.2) are easily obtained as exponentials for lzl > 1.

Let the solutions of Eq. (2.2) be W, and W, for |z|< 1. Then W, and W, have the

2 1 2
form
V4(2-¢) Zh (< (Z"'))
2 f J-
where Zn is a Bessel function of order n. The index n is given by h = I;' - ConBh

vhere /4 is the angle which the wave number of the perturbation, k, makes with the
x-axis (thus, o« = k cos§ ).
/
Imposing the continuity of W and W at + L and at ¥ 1 the continuity of W and

the Jump conditions

aw = W
1, =<
L—_a_/_.!] _ W (-1)
dz 2= - B | + <

where the square brackets = denote the jump in crossing the interface in the positive

sense, we obtain the eigenvalue equation for c¢:
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Here the primes denote derivatives of Wl and W2 with respect to their arguments

(not with respect to z) and

Se = K (Qi=¢)

S. = —xk{I+e)

K+ - ,_.’.<_ \([Sf""hz':?
s
+-
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The branch cuts of the square root functions are defined so that they have a

positive real part.,

5. THECASEL =1

Equation (4,1) is considerably simplified if we set L = 1:

(iSe) W, (5:) 4 (Se=1) W (<S+) _ (;s-)w,'(is-)—(s-ﬂ) W, (4S-)

(<34) w,i(z s, )+ (se-1) Wy (e54) (¢S-) wa'(zs,)- (s_+1) Wa (8-)

{5.1)
It can, therefore, be studied in greater detail and the results seem to be

qualitatively the same as for the case L > 1,

(a) Expansion in Powers of the Wave Number

Assuming that the total wave number, k, is small, and that $_and S_are of

the order of magnitude of k, we may expand Wl'and w2 in Eq, (5.1) in power series,
The first approximation gives

(%)

I aw s
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The assumption c; > 0 implies that

-—77'<&2/vg

and, therefore, that
-n </ < n

To the second order we obtain

e 2 K 2
: LU + O(k
c = " ot an {, T oyroify A= Coa PP/, ( ) } 0 <f<m

where a further restriction on # is made to avoid violating our assumptions

c > O and S‘+9£S’_ of order k.

Another solution can be found by assuming that ke is of the order of magnitude

of \/k o We find

c = TE - R o6 )

I< I Vnr- i

Thus, we have found [n] + 1 amplified modes, where [n] is the greatest integer
in n. This is not necessarily the total number of such modes, In fig, 2, for example,
it is seen that for n = 0,9 there are two modes, one of which exists only for x =0,53,
When n is half of an odd integer, however, it can be shown that [n] + 1 is the total

number of amplified modes (see part (c) ).

Figure 2
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(b) Expansions for Large Values of the Wave Number

If ve assume that both §_and § _are of the order of magnitude of k as k —» oo
and use the asymptotic expansions for W, and W, in Eq. (5.1), we are led to an
impossibility. Thus, it is clear that ¢ —p + 1 as k-poe, This is not surprising
since to very small wavelengths the configuration should look roughly like a pair of
flow regimes each consisting of two linear profiles extending to infinity.

Using Hn(l) and Hn(z) as the solutions of Bessel's equation and the asymptotic
expansions for Wl(i S.), Wé(i S. ) as ¢ ~» 1 and the asymptotic expansions for
LY (i Se¢ )s W, (1 S4) as ¢ =» -1, in the limit of infinite k we obtain the pair of

equations

|
O

(1.)' . (2) .
iSely T (68+) + (Se =3 ) Ha (S+)

cs Ky = (e YU (es) =0

Thus, for infinite k we obtain two completely decoupled waves,

These equations are easily solved for half integer values of n for then they

Enel

become polynomials of order . For example, for n = 3/2 we obtain four solutions

Cc

4__{‘ _ 3/‘1:2/7’/‘!}

K

o{ C; + o. 4¢3 JT |

and for n = 5/2 we obtain six solutions

c=i{|—3—'/<3-1} XC: = o
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As we shall see in the next section, one of the peculiarities of these solutions
is that the amplification factor o(ci is essentially constant over the entire range
vhere ¢_# 0

r
(e) Solutions for Half Integer Values of n
When n is half of an odd integer the Bessel functions can be written in terms

of elementary functions and Eq. (5.1) can be written in terms of S+ S. = -k2(1 -62)

R . . Lrn+i
and S; - S; = 2k3 in fact, it is a polynomial of order 2 in S+.S_ , For

example, for n = 3/2 we have
(g_,,g_) + s+s_{ K-,, o

- 4 K —
- YK -3k + 1 - e (k+1) = ©

and for n = 5/2 we have

= 2 1 "‘7'/‘
(se5.) & (s.5.) {7/<—;,—+:,L.e }

2 -4k
4.(5,,;_){2‘/0( —/5'/(4-% — e (3 + j{) }

=41¢ 2
+—34K3—63K1+5"/I<—8/+2/L‘e' (6/<+‘?) = O

7

The solutions for these two cases are typical. The amplification factors are

plotted in Figs, 3 and 4,
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Figure 3 Figure L4

n=3/2 L=1 n=5/2 L=1

In Figure 3, for example, in the region to the left of the point where the two
curves join there are two modes having c. = O, In the region to the right of this
point there are two modes with LA + 1 having the same amplification factor,
It can be seen that when c. # O the amplification very quickly reaches the value it

has for infinite k.

(d) Numerical Calculations

As can be seen in Figs., 3 and 4, the amplification reaches a maximum for values
of k for which e =0. Ifec = 0/\5L="Sf*and the right hand side of Eq. (5.1) is
the complex conjugate of the left hand side. The problem can then be formulated as

the problem of finding the roots kci of the real equation

(5S¢ )W, (ese) + (S =1) W, (<S4) ~ = o
”"’gf = A7 (7= »»/ﬁia,a,‘,)

(<Se) Wy (£8) + (Sem1 ) Wa (180)

This problem is quite suitable for machine calculation, The maximum amplification

has been calculated on an IBM 7090 as a function of n, The result is shown in Fig. 5,



Figure 5
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From Fig. 4 it is seen that Jci—> / T 'as n—>» @, This is to be expected since

Recalling that n° = 7;- - , J €0, ve see that & —>90° as n —> ==,
perturbations at right angles to the flow should not bé affected by it, and the
maximum amplification for the layer without a shear flow is ole § = \/_3:_' (corres-
ponding to k =e°),

Since o(ci 7 \/Tfor n < .55 we find & eritical Richardson number (=J)erit.=.05
below which the maximum instability occurs for cos § = 1; i.;eo; perturbations in the
windward direction, and above which the least sta‘blé modé is at right angles to the
wind, Thus, the instability is of the shear type or a puré roll depending on the
Richardson number. The wave number at which the maximum amplification occurs is

given as a function of n in Fig. 6.
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Figure 6

Wave Number of Maximum Amplification

For small n it approaches .4 which is characteristic of the velocity profile, for

large n it approaches infinity which is characteristic of a convective layer,

6, THECASEL > 1

If c. =0 the right hand side of Eq. (4.1) is equal to the complex conjugate of
the left hand side and roots can be found without much difficulty by machine cal-
culation as in section 5, A typical graph is shown in Fig, T where o(C:./VJ‘ vs k is

given for n = 1,5 and L = 10,

Figure T
n = 1,5 L =10
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The maximum amplification rates with c.*= 0 have been calculated for L = 10 and
100 and are shown in Fig. 5. The curves are qualitatively the same as for L = 1,
The line u(cx/ﬁﬁf' =1 is crossed at n = ,56 for both L = 10 and L = 100
giving a critical Richardson number of (-J) erit, = .06,

The wave number at which maximum amplification oecurs is shown in Fig, 6 for
L = 10, There is a discontinuity in this graph because for n > .67 the maximum
oeccurs in the first loop (Fig., 7) while for n < c67'thé maximum occurs in the

second loop in a range of larger wave numbers,

T. CONCLUSIONS
The maximum instabilities have been calculated for a velocity profile in a
convectively unstable layer whose width is 1, 10, and 100 times the width of the pro~
file. In the latter two cases the solution is incomplete since only those modes hav-

o)

ing a wave velocity equal to the mean velocity at the center of the layer (cr
have been calculated, The solution for the case L = 1, hovever, indicates that the
maximum instability should be among these modes., The instabilities are of the shear
type or the roll type depending on a critical Richardson number which is quite in-
sensitive to the width of the layer.
This division into shear and roll motions is somewhat unexpected, especially in
view of the inequality (3.1). Instead, it might have been expected that the shear
and convective instabilities would combine to give a maximum at some intermediate angle,
The use of the half-jet profile is rather unrealistic for the atmosphere where
the jet type profile is characteristich. It has been used because the jet profile
leads to a much more difficult problem for machine computation, that of finding the

complex roots of & complex eguation.
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CAPTIONS

Piecewise linear velocity profile in a layer of width 2L,

Amplification as a function of the wave number for n = 0.9, L
Amplification as a function of the wave number for n = 1.5, L
Amplification as a function of the wave number for n = 2.5, L

Maximum amplification as a funption of n for L =1, 10, 100,

Wave number of maximum amplification as a function of n for L

Amplification as a function of the wave number for n = 1.5, L
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Figure 1

Piecewise linear velocity profile in a layer of width 2L
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Figure 2

Amplification as a function of the wave number for n
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Figure L

Amplification as a function of the wave number for n = 2,5, L = 1,
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Figure 6

Wave number of maximum amplification as a function of n for L = 1, 10,
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Figure T

Arplification as a function of the wave number for n = 1.5, L = 10,




